Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 13(1): 4879, 2022 08 19.
Article in English | MEDLINE | ID: covidwho-2000887

ABSTRACT

England has experienced a heavy burden of COVID-19, with multiple waves of SARS-CoV-2 transmission since early 2020 and high infection levels following the emergence and spread of Omicron variants since late 2021. In response to rising Omicron cases, booster vaccinations were accelerated and offered to all adults in England. Using a model fitted to more than 2 years of epidemiological data, we project potential dynamics of SARS-CoV-2 infections, hospital admissions and deaths in England to December 2022. We consider key uncertainties including future behavioural change and waning immunity and assess the effectiveness of booster vaccinations in mitigating SARS-CoV-2 disease burden between October 2021 and December 2022. If no new variants emerge, SARS-CoV-2 transmission is expected to decline, with low levels remaining in the coming months. The extent to which projected SARS-CoV-2 transmission resurges later in 2022 depends largely on assumptions around waning immunity and to some extent, behaviour, and seasonality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology , Hospitalization , Humans
2.
Lancet Reg Health Eur ; 17: 100381, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783621

ABSTRACT

Background: In settings where the COVID-19 vaccine supply is constrained, extending the intervals between the first and second doses of the COVID-19 vaccine may allow more people receive their first doses earlier. Our aim is to estimate the health impact of COVID-19 vaccination alongside benefit-risk assessment of different dosing intervals in 13 middle-income countries (MICs) of Europe. Methods: We fitted a dynamic transmission model to country-level daily reported COVID-19 mortality in 13 MICs in Europe (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine). A vaccine product with characteristics similar to those of the Oxford/AstraZeneca COVID-19 (AZD1222) vaccine was used in the base case scenario and was complemented by sensitivity analyses around efficacies similar to other COVID-19 vaccines. Both fixed dosing intervals at 4, 8, 12, 16, and 20 weeks and dose-specific intervals that prioritise specific doses for certain age groups were tested. Optimal intervals minimise COVID-19 mortality between March 2021 and December 2022. We incorporated the emergence of variants of concern (VOCs) into the model and conducted a benefit-risk assessment to quantify the tradeoff between health benefits versus adverse events following immunisation. Findings: In all countries modelled, optimal strategies are those that prioritise the first doses among older adults (60+ years) or adults (20+ years), which lead to dosing intervals longer than six months. In comparison, a four-week fixed dosing interval may incur 10.1% [range: 4.3% - 19.0%; n = 13 (countries)] more deaths. The rapid waning of the immunity induced by the first dose (i.e. with means ranging 60-120 days as opposed to 360 days in the base case) resulted in shorter optimal dosing intervals of 8-20 weeks. Benefit-risk ratios were the highest for fixed dosing intervals of 8-12 weeks. Interpretation: We infer that longer dosing intervals of over six months could reduce COVID-19 mortality in MICs of Europe. Certain parameters, such as rapid waning of first-dose induced immunity and increased immune escape through the emergence of VOCs, could significantly shorten the optimal dosing intervals. Funding: World Health Organization.

3.
BMC Infect Dis ; 22(1): 324, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1770492

ABSTRACT

BACKGROUND: COVID-19 outbreaks still occur in English care homes despite the interventions in place. METHODS: We developed a stochastic compartmental model to simulate the spread of SARS-CoV-2 within an English care home. We quantified the outbreak risk with baseline non-pharmaceutical interventions (NPIs) already in place, the role of community prevalence in driving outbreaks, and the relative contribution of all importation routes into a fully susceptible care home. We also considered the potential impact of additional control measures in care homes with and without immunity, namely: increasing staff and resident testing frequency, using lateral flow antigen testing (LFD) tests instead of polymerase chain reaction (PCR), enhancing infection prevention and control (IPC), increasing the proportion of residents isolated, shortening the delay to isolation, improving the effectiveness of isolation, restricting visitors and limiting staff to working in one care home. We additionally present a Shiny application for users to apply this model to their facility of interest, specifying care home, outbreak and intervention characteristics. RESULTS: The model suggests that importation of SARS-CoV-2 by staff, from the community, is the main driver of outbreaks, that importation by visitors or from hospitals is rare, and that the past testing strategy (monthly testing of residents and daily testing of staff by PCR) likely provides negligible benefit in preventing outbreaks. Daily staff testing by LFD was 39% (95% 18-55%) effective in preventing outbreaks at 30 days compared to no testing. CONCLUSIONS: Increasing the frequency of testing in staff and enhancing IPC are important to preventing importations to the care home. Further work is needed to understand the impact of vaccination in this population, which is likely to be very effective in preventing outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Humans , Infection Control , Vaccination
4.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613510

ABSTRACT

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.


Subject(s)
COVID-19 , Europe/epidemiology , Hospitalization , Humans , SARS-CoV-2 , Vaccination
5.
Lancet Reg Health Eur ; 12: 100267, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1540829

ABSTRACT

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine supply conditions. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted age-specific compartmental models to the reported daily COVID-19 mortality in 2020 to inform the immunity level before vaccine roll-out. Models capture country-specific differences in population structures, contact patterns, epidemic history, life expectancy, and GDP per capita.We examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incrementally younger age groups. We explored four roll-out scenarios (R1-4) - the slowest scenario (R1) reached 30% coverage by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy, comorbidity- and quality-adjusted life years, and human capital. Six vaccine profiles were tested - the highest performing vaccine has 95% efficacy against both infection and disease, and the lowest 50% against diseases and 0% against infection. FINDINGS: Of the 20 decision-making metrics and roll-out scenario combinations, the same optimal strategy applied to all countries in only one combination; V60 was more or similarly desirable than V75 in 19 combinations. Of the 38 countries with fitted models, 11-37 countries had variable optimal strategies by decision-making metrics or roll-out scenarios. There are greater benefits in prioritising older adults when roll-out is slow and when vaccine profiles are less favourable. INTERPRETATION: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics, and roll-out speeds. A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust.

6.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: covidwho-1476375

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines , Child , Child, Preschool , Communicable Disease Control , England/epidemiology , Europe/epidemiology , Female , Humans , Infant , Male , Middle Aged , Models, Theoretical , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Severity of Illness Index , Socioeconomic Factors , United States/epidemiology , Viral Load , Young Adult
7.
Science ; 371(6538):149-149, 2021.
Article in English | Academic Search Complete | ID: covidwho-1181922

ABSTRACT

The article discusses about the novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused COVID-19. One of these variant of concern was B.1.1.7 which was first detected in southeast England and spread to become the dominant lineage in the United Kingdom in just a few months.

8.
Lancet Infect Dis ; 21(4): 482-492, 2021 04.
Article in English | MEDLINE | ID: covidwho-989487

ABSTRACT

BACKGROUND: A second wave of COVID-19 cases in autumn, 2020, in England led to localised, tiered restrictions (so-called alert levels) and, subsequently, a second national lockdown. We examined the impact of these tiered restrictions, and alternatives for lockdown stringency, timing, and duration, on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and hospital admissions and deaths from COVID-19. METHODS: We fit an age-structured mathematical model of SARS-CoV-2 transmission to data on hospital admissions and hospital bed occupancy (ISARIC4C/COVID-19 Clinical Information Network, National Health Service [NHS] England), seroprevalence (Office for National Statistics, UK Biobank, REACT-2 study), virology (REACT-1 study), and deaths (Public Health England) across the seven NHS England regions from March 1, to Oct 13, 2020. We analysed mobility (Google Community Mobility) and social contact (CoMix study) data to estimate the effect of tiered restrictions implemented in England, and of lockdowns implemented in Northern Ireland and Wales, in October, 2020, and projected epidemiological scenarios for England up to March 31, 2021. FINDINGS: We estimated a reduction in the effective reproduction number (Rt) of 2% (95% credible interval [CrI] 0-4) for tier 2, 10% (6-14) for tier 3, 35% (30-41) for a Northern Ireland-stringency lockdown with schools closed, and 44% (37-49) for a Wales-stringency lockdown with schools closed. From Oct 1, 2020, to March 31, 2021, a projected COVID-19 epidemic without tiered restrictions or lockdown results in 280 000 (95% projection interval 274 000-287 000) hospital admissions and 58 500 (55 800-61 100) deaths. Tiered restrictions would reduce hospital admissions to 238 000 (231 000-245 000) and deaths to 48 600 (46 400-50 700). From Nov 5, 2020, a 4-week Wales-type lockdown with schools remaining open-similar to the lockdown measures announced in England in November, 2020-was projected to further reduce hospital admissions to 186 000 (179 000-193 000) and deaths to 36 800 (34 900-38 800). Closing schools was projected to further reduce hospital admissions to 157 000 (152 000-163 000) and deaths to 30 300 (29 000-31 900). A projected lockdown of greater than 4 weeks would reduce deaths but would bring diminishing returns in reducing peak pressure on hospital services. An earlier lockdown would have reduced deaths and hospitalisations in the short term, but would lead to a faster resurgence in cases after January, 2021. In a post-hoc analysis, we estimated that the second lockdown in England (Nov 5-Dec 2) reduced Rt by 22% (95% CrI 15-29), rather than the 32% (25-39) reduction estimated for a Wales-stringency lockdown with schools open. INTERPRETATION: Lockdown measures outperform less stringent restrictions in reducing cumulative deaths. We projected that the lockdown policy announced to commence in England on Nov 5, with a similar stringency to the lockdown adopted in Wales, would reduce pressure on the health service and would be well timed to suppress deaths over the winter period, while allowing schools to remain open. Following completion of the analysis, we analysed new data from November, 2020, and found that despite similarities in policy, the second lockdown in England had a smaller impact on behaviour than did the second lockdown in Wales, resulting in more deaths and hospitalisations than we originally projected when focusing on a Wales-stringency scenario for the lockdown. FUNDING: Horizon 2020, UK Medical Research Council, and the National Institute for Health Research.


Subject(s)
COVID-19/mortality , COVID-19/transmission , Communicable Disease Control , Hospitalization/statistics & numerical data , Models, Statistical , Basic Reproduction Number , England/epidemiology , Epidemics , Forecasting , Hospital Bed Capacity , Hospitals , Humans , Intensive Care Units/statistics & numerical data , Northern Ireland/epidemiology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , State Medicine , Wales/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL